Doubles
double is Loom’s 64-bit IEEE-754 binary64 floating-point type. Use it for high-precision real-number arithmetic in science, simulation, graphics, finance (with caveats), and general numeric work.
Note: In some older examples you may see
f64. Treat it as synonymous withdouble.
Quick reference
| Property | Value |
|---|---|
| Width | 64 bits (binary64) |
| Precision | 53 significant bits ≈ 15–16 decimal digits |
| Finite range | ~±2.23e−308 … ±1.79e+308 |
| Rounding mode | Round-to-nearest, ties-to-even |
| Specials | +0.0, -0.0, +∞, -∞, NaN (quiet) |
| Subnormals | Supported (gradual underflow) |
| Default float type | Yes — bare float literals infer to double |
ABI: sizeof(double) == 8, alignof(double) == 8 (typical).
Literals
Decimal with optional exponent; underscores allowed for readability. Suffix is optional for double (it’s the default).
let a: double = 1.0
let b = 3.14159 # inferred double
let c: double = 6.022_140_76e23
let z: double = -0.0 # negative zero is distinct from +0.0Special constants:
let inf = double::INFINITY
let ninf = double::NEG_INFINITY
let nan = double::NANOperators & semantics
- Arithmetic:
+ - * / - Remainder:
a % b→ IEEE remainder (a - trunc(a/b)*b) - Comparisons:
== != < <= > >=
let x: double = 5.5
let y: double = 2.0
let q = x / y # 2.75
let r = x % y # 1.5Exceptional results
(+val) / 0.0 → +∞,(-val) / 0.0 → -∞0.0 / 0.0,∞ - ∞,sqrt(-1.0)→NaN- Overflow →
±∞; underflow → subnormal or signed zero (precision lost)
NaN, ±0.0, ordering
- Any comparison with
NaNis false except!=, which is true. +0.0 == -0.0is true, but the sign bit differs.- For total ordering (sorting, maps), use
total_cmp(a, b).
Useful predicates & helpers:
x.is_nan()
x.is_finite()
x.is_infinite()
x.is_subnormal()
x.signum() # +1.0, -1.0, or NaN
copysign(magnitude, sign_source)Conversions
Double ↔ other floats
- Widening to a higher-precision type (if present) is exact; narrowing to a smaller one rounds to nearest.
- Casts:
asrounds;to_f32_checked()andto_f32_saturating()provide safe variants.
Double ↔ integers
- Int → double: exact if the integer fits within 53 bits of precision; otherwise rounded.
- Double → int: truncates toward zero; out-of-range is checked in Debug and undefined in Release unless using safe helpers.
let i: i32 = (3.9 as i32) # 3
let f: double = (1_000_000 as double)
let (v, of) = double.to_i64_checked(9.22e18) # detect overflowMixed-type rules
- Mixing integers with
doublepromotes the integer operand todouble. - Mixing
doublewith lower-precision floats promotes todouble. - No implicit conversion between
doubleand strings—use parse/format APIs.
Math library (selected)
- Magnitude & roots:
abs,sqrt,cbrt,hypot - Rounding:
floor,ceil,round,trunc,fract - Exp & logs:
exp,exp2,ln,log10,log2,powf(y),powi(k) - Trig:
sin,cos,tan,asin,acos,atan,atan2(y, x) - Hyperbolic:
sinh,cosh,tanh, … - FMA:
fma(a, b, c)computesa*b + cwith a single rounding - Decompose/compose:
frexp()→(mantissa, exp),ldexp(m, e) - Split:
modf()→(int_part, frac_part) - Classification:
classify()→{Zero, Subnormal, Normal, Inf, NaN}
let r: double = double::hypot(3.0, 4.0) # 5.0
let z: double = 1.0.fma(1e10, -1e10) # avoids extra roundingBit-level access & endianness
let bits: u64 = (3.5 as double).to_bits() # raw IEEE-754
let x: double = double.from_bits(bits)
let be = x.to_be_bytes() # explicit byte order for I/O
let y = double.from_be_bytes(be)Formatting & parsing
let v: double = 1234.56789
print(v) # 1234.56789
printf("fixed=%.2f sci=%.3e gen=%g\n", v, v, v)
# fixed=1234.57 sci=1.235e+03 gen=1234.57
let a: double = double.parse("3.14")
let b: double = double.parse("6.022e23")
let o_opt = double.parse_opt("NaN") # Option<double>Accepted special inputs: inf, +inf, -inf, nan (case-insensitive). nan(payload) is permitted; payload bit semantics are platform-dependent.
Performance, precision & determinism
-
Prefer
doublefor numerically sensitive work; use lower precision only for bandwidth/memory. -
Floating arithmetic is not associative:
(a+b)+cmay differ froma+(b+c). -
For reproducibility across platforms/compilers:
- Avoid “fast-math” for critical code.
- Use
fma, numerically stable algorithms (e.g., Kahan summation), and fixed evaluation order.
-
Many decimals (e.g.,
0.1) aren’t exactly representable; compare with tolerances.
pub func approx_eq(a: double, b: double, eps: double = 1e-12): bool {
ret (a - b).abs() <= eps * (1.0 + a.abs().max(b.abs()))
}Examples
Kahan (compensated) summation
pub func sum_kahan(xs: []double): double {
var s = 0.0
var c = 0.0
for x in xs {
let y = x - c
let t = s + y
c = (t - s) - y
s = t
}
ret s
}Robust normalization
pub func normalize(x: double, y: double): (double, double) {
let d = double::hypot(x, y)
if d == 0.0 { ret (0.0, 0.0) }
ret (x / d, y / d)
}Stable linear interpolation using FMA
pub func lerp(a: double, b: double, t: double): double {
ret (b - a).fma(t, a)
}Total ordering with NaNs (for sorting)
pub func sort_doubles(xs: []double): []double {
xs.sort_with(|l, r| total_cmp(l, r))
ret xs
}FAQs
Q: Should I use double for currency?
A: Prefer scaled integers (e.g., cents in i64) or decimal types to avoid rounding artifacts. Use double only when approximate values are acceptable.
Q: Why does 0.1 + 0.2 print 0.30000000000000004?
A: 0.1 and 0.2 can’t be represented exactly in binary floating point; the nearest representable values sum to a close neighbor. Compare with tolerances.
Q: How do I make results reproducible across platforms?
A: Disable aggressive fast-math, use stable algorithms (Kahan, pairwise summation), rely on fma where available, and fix evaluation order.
See also
- Integers:
i8/i16/i32/i64,u8/u16/u32/u64 - Lower-precision floats (if enabled):
f16,f32,f64 - Numerics & math utilities in the standard library